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The two-dimensional sloshing of a fluid in a horizontal circular cylindrical container 
and the three-dimensional sloshing of a fluid in a spherical container are considered. 
The linearized theory of water waves is used to determine the frequencies of free 
oscillations under gravity of an arbitrary amount of fluid in such tanks. Special 
coordinate systems are used and the problems are formulated in terms of integral 
equations which are solved numerically for the eigenvalues. Detailed tables of the 
sloshing frequencies are presented for a range of fill-depths of the containers. 

1. Introduction 
In  a variety of circumstances it is important to know the natural frequencies of 

oscillation of fluid in a partially filled container. For example, the sloshing of fuel 
in the tanks of an aircraft or space vehicle could seriously affect the performance of 
the control systems and so it is desirable to avoid external excitation a t  the natural 
oscillation frequencies of the liquid. There are a small number of analytical results for 
simple geometries, most of which are given by Lamb (1932), but most calculations 
of these sloshing frequencies have been made using a variety of essentially numerical 
techniques. Extensive references to this body of work may be fourid in the articles 
by Moiseev & Petrov (1965) and Fox & Kuttler (1983). 

The present work on fluid sloshing under gravity is concerned mostly with a 
spherical container filled to an arbitrary depth. An inviscid fluid in any tank with a 
vertical axis of symmetry can support free oscillations with integral azimuthal 
wavenumbers m (including zero) and for each m there is an infinite sequence of 
discrete oscillation frequencies. The precise values of the frequencies depend on the 
shape of the container. One container geometry for which this doubly infinite 
sequence of frequencies is easily determined is a circular cylinder where the 
frequencies are given by the zeros of the derivative of Bessel functions; see, for 
example, Mei (1983, p. 188). Except for certain special cases (for example, an 
analytical solution for a single mode in a conical container, see McIver & Smith 1987) 
other axisymmetric geometries must be treated numerically. Much of the previous 
work for spherical tanks has been concerned with the m = 1 modes as these are 
usually most easily excited. A variational technique applicable to all modes of 
oscillation is given by Moiseev & Petrov (1965), but they report calculations only for 
the m = 1 mode of lowest frequency presented as a graph of frequency against fill 
depth of the tank. Similarly presented results, obtained by integral equation 
methods, are given by Budiansky (1960) and Chu (1964) for the lowest three m = 1 
modes. The former also gives numerical values of these modal frequencies for a half- 
full tank. With the restriction that the tank cannot be more than half full, 
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approximations to the frequencies of all modes, for every m, may be calculated from 
the Mild-slope equation as described by McIver & Smith (1987). In the present paper, 
an accurate method is described that may be applied for all m and any fill depth and 
detailed numerical results are given for m = 0, 1, 2, 3. 

The two-dimensional analogue of the spherical tank problem is fluid sloshing in a 
horizontal circular cylinder, with the restriction that the motion is perpendicular to 
the cylinder generators. Budiansky (1960) also treated this problem and gives 
numerical values for the frequencies of antisymmetric oscillations for a range of fill 
depths. More recently, Kuttler & Sigillito (1984) have made calculations for both 
antisymmetric and symmetric modes and are able to give rigorous error bounds for 
their results. This two-dimensional problem is also treated in the present work and 
results are in excellent agreement with those of Kuttler & Sigillito. 

Of some interest are the limiting cases when the fill depth tends to the diameter of 
the cylinder or sphere. These limits are equivalent to the radius tending to infinity 
for a fixed free surface width, to give either a strip-like or circular aperture in a solid 
plane bounding a half-space filled with fluid. These sloshing problems have been 
treated in some detail as they provide upper bounds on the natural frequencies of 
fluid in finite containers with the same shape and size of aperture. Henrici, Troesch 
& Wuytack (1970) have made calculations for both strip-like and circular apertures 
in a plane. In the latter case, they obtained the surprising result that the infinite 
sequences of frequencies for azimuthal wavenumbers m = 0 and m = 2 are identical. 
This was confirmed by Miles (1972) using a different, and more straightforward, 
method. The other limiting case, as the fill depth tends to zero, may be calculated 
analytically from shallow water theory (which coincides with the present theory in 
the limit of zero fill-depth) for both the cylindrical and spherical geometries and the 
details are given by Lamb (1932, pp. 277 and 292, respectively). Numerical values for 
both of these limiting cases may be determined by the methods described here. 

Mathematically, the problem may be stated as follows. The velocity potential for 
the small time-harmonic irrotational motion (a harmonic time factor is omitted in 
the following) of an inviscid, incompressible fluid must satisfy Laplace’s equation in 
the fluid domain, have zero normal derivative a t  the solid walls of the container and 
satisfy the linearized free-surface condition 

%K$ = 0. 
a2 

Here x is a coordinate measured vertically downwards with origin at the mean level 
of the free surface and K = w2/g,  where o is the radian frequency of the oscillations 
and g the acceleration due to gravity. This is an eigenvalue problem with the 
eigenvalue K appearing in the boundary condition (1.1) rather than the differential 
equation. The solution approach used here is to choose coordinate systems in which 
the container walls and the free surface coincide with coordinate lines or surfaces and 
to formulate the eigenvalue problems in terms of integral equations which may be 
solved numerically. For the cylindrical container, two-dimensional bipolar coordi- 
nates are used and a homogenous Fredholm integral equation of the second kind 
results. In the spherical case, toroidal coordinates are appropriate and the eigenvalue 
problem is formulated in terms of a pair of coupled integral equations. This extra 
complication for the spherical geometry arises because Laplace’s equation is not fully 
separable when expressed in toroidal coordinates. 

The plan of the paper is as follows. The integral equations for the cylindrical and 
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spherical geometries are derived in $92 and 3 respectively. The method of solution 
is described in 94 and detailed numerical results are presented in $5. 

2. Sloshing in a cylindrical container 
The fluid is contained in a fixed horizontal cylindrical tank of radius c and has a 

depth d ,  as shown in figure 1. Two-dimensional Cartesian coordinates (z, x )  are chosen 
in a plane perpendicular to the cylinder generators. The x-axis is in the plane of the 
free surface, which occupies -a < x < a ,  and the z-axis points vertically downwards 
through the midpoint of the free surface. interval. Two-dimensional bipolar 
coordinates (a, P )  are related to these Cartesian coordinates by 

z+iz=atanh;(a+ip)  (-a < a <  co, - x < P < x ) ,  (2.1) 

see Lebedev, Skalskaya & Uflyand (1965, p. 212). The intersections of the container 
with the free surface are at a = f co and the z-axis coincides with a = 0. The cylinder 
surface coincides with the coordinate line /3 = Po, 0 < Po < x ,  where Po is related to 
the fill depth and cylinder radius by 

C O S ~ ~  = 1 - d / c ,  (2.2) 

and the free surface coincides with p = 0. In terms of bipolar coordinates, Laplace’s 
equation for the potential $(a,P) within the fluid region is 

the zero-flow condition at  the solid wall is 

and the free surface condition, equation (1. l),  

where h = Ka. 
The possible modes of oscillation are either symmetric or antisymmetric about 

a = 0 (equivalent to the oscillations being symmetric or antisymmetric about z = 0). 
For antisymmetric oscillations the general solution of (2.3) satisfying the body 
boundary condition (2.4) is 

(2.6) $(a, p) = IoW A (7) cosh 7(/3 -Po) sin 7a d7. 

Substituting this solution into the free-surface condition (2.5) and operating on the 
resulting equation with Fourier sine transform with respect to a, gives 

A(7‘ )~’s inh~’P~ = h A ( 7 ) ~ 0 s h 7 / ? ~ 1 ~ ( 7 , 7 ’ ) d ~  (0 < 7’ < co), (2.7) 

(2.8) 
7+7’ 

sinh (7 + 7’ )x ’  
- 2 O0 sin ra sin +a 7-7’ 

x I 0  l+cosha 
where lA(7,7’) = - da = 

sinh (7 - 7’) 7c 
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9 2  

FIGURE 1. Definition sketch for cylindrical container. 

The last integral follows, after a little manipulation, from equation 3.982(1) of 
Gradshteyn & Ryzhik (1980). Defining a new variable 

B(7) = (7sinh7p0 cosh7P0)fA(7), (2.9) 
gives the integral equat,ion 

a 

B(7’) = A I 0  B(T)KA(T, 7’) d7 (0 < 7’ < CO), (2.10) 

with the symmetric kernel 

KA(7, 7’) = (77’ tanh7P0 tanh T ’ / ? ~ ) - ; J ~ ( T ,  7’). (2.1 1)  

The problem has been reduced to determining the eigenvalues A( = Ku) for which 
(2.10) has non-trivial solutions. The symmetry of the integral equation kernel 
ensures that all the eigenvalues are real. 

For symmetric oscillations, the appropriate form of the solution of (2.3) satisfying 
(2.4) is 

$(a,/?) = M+J:A(T)COS~T(B-/?,) cosmd7, (2.12) 

where M is a constant. The requirement that the mean level of the free surface is zero 
may be used to show that M is identically zero. Applying the free-surface condition 
(2.5), operating on the resulting equation with the Fourier cosine transform and 
introducing B(r) ,  as in (2.9), yields the integral equation 

B(7)KS(7, 7’) dr (0 < 7’ < CO) ,  (2.13) 
- -  

where the kernel 
Ks(7, 7’)  = (77’ tanh rP0 tanh ~ ’ / 3 0 ) - ~ & ( ~ ,  7’) (2.14) 

. (2.15) 
2 cos 7u cos r’a r--7’ r+r’ 

Is(r,7’) = - da = 
and nJo l+cosha s i n h ( ~ - ~ ’ ) n + s i n h ( 7 + r ’ ) n  

The last integral again follows from equation 3.982(1) of Gradshteyn & Ryshik 
(1980). 
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In the limit p O - f x ,  the present method recovers the problem of the oscillations of 
fluid in a half-space bounded by a solid plane with a strip-like aperture. A condition 
on the solution is required to replace the solid-wall condition, equation (2.4), which 
is lost for 0 < < x in this limiting problem. For the oscillations to have no flow to 
infinity, Henrici et al. (1970) point out that the solution must satisfy 

IV#l = o(r-l)  ( r  + CO), 

where r = (2 + 2):, or, equivalently, 

(2.16) 

$ds = 0, (2.17) 

where F denotes the free surface and ds is the arc-length element. Equation (2.17) is 
the statement that the mean level of the free surface is zero. For antisymmetric 
oscillations equation (2.17) is satisfied trivially by the form (2.6). For symmetric 
oscillations consider the solution (2.12) as P-+OO,  that is (a,/3)+(O,x). From 
(2.1)) 

as this limit is approached and inserting this into (2.12), with Po = x ,  gives 

a+i(P-x) x 2a/(x+iz), (2.18) 

IV#I = 0 ( ~ - 3 )  ( r +  w), (2.19) 

and (2.16) is satisfied. Hence, no further conditions are required to obtain physically 
meaningful solutions when Po = x .  

3. Sloshing in a spherical container 
The fluid is contained within a fixed spherical tank of radius c and has a depth d .  

Cylindrical coordinates (p ,  +, z )  are chosen with the z-axis pointing vertically 
downwards and the origin at  the centre of the free-surface disk which is of radius a. 
Toroidal coordinaes (a, p, +) are related to the cylindrical coordinates by 

p+iz = atanh;(a+ip) (0 < a < GO, - x  < /3 < x ) ,  (3.1) 

see Sneddon (1972, p. 373). In figure 1, if 2 is replaced by p then it illustrates a 
vertical cross-section containing the axis of the spherical tank. The circle of 
intersection of the container with the free surface is at  a = GO and the z-axis coincides 
with a = 0. The free surface now coincides with the coordinate surface /3 = 0 and the 
container wall with the coordinate surface j3 = Po, 0 < Po < 7c. The fill depth and 
sphere radius are related to Po by (2.2) and, in toroidal coordinates, the boundary 
conditions are of exactly the same form as (2.4) and (2.5). 

When expressed in terms of toroidal coordinates Laplace’s equation is not fully 
separable, though it is possible to separate the dependence on the azimuthal 
coordinate +. Following Sneddon (1972, p. 379), the general solution of Laplace’s 
equation with azimuthal wavenumber m( = 0 ,1 ,2 ,  . ..) and which is finite for a = 0 
(the z-axis) is 

#(a,P,+) = cosm+(cosha+cosp)f (A”(T) coshT/3+B(T)sinh7P)P?;+i,(cosha)d7, 

where P;([) is the associated Legendre function of the first kind with degree p) order 
v and argument 5. For the limiting problem, Po = x ,  of a fluid-filled half-space 
bounded by a solid plane containing a circular aperture, further conditions are 

1 (3.2) 
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necessary to ensure solutions have no flow to infinity. Henrici et al. (1970) note that 
there is no such flow provided 

IVq5l = o(R-') (R+ CO) ,  (3.3) 

where R = (pz + z2) t ,  or, equivalently, 

q5a'sinha 
d a d $ = = ,  /3=0, (3.4) 

where F denotes the free surface and dA is the area element. For non-zero m, 
equation (3.4) is satisfied trivally because of the form of the variation in 9. For m 
zero, the behaviour of Vg5 for large R,  that is (a, /3) + (0, n), may be deduced from 
(3.2) using the approximation to (3.1), 

ct+i(/3-n) x Za/(p+iz). (3.5) 

It is found that IVq5l = O(R-') (R + CO), (3-6) 

violating (3.3), unless the function A(T) satisfies a certain condition. The required 
condition is perhaps most easily determined by inserting (3.2), with m = 0, into 
equation (3.4) to obtain 

= 0, 
sinh T K  

a) sinh a 2% 
da = ~ 

sinh TX'  (1  + cosh a)$ 
where the result 

(3.7) 

(3.8) 

(Gradshteyn & Ryzhik 1980, equation 7.135(2)) has been used. Equation (3.7) may 
be satisfied by taking 

A(T) = A ( ~ ) + 2 h f s e c h ~ x ,  (3.9) 

where (3.10) 

is a constant. Substituting (3.9) into (3.2) gives a modified form for the potential 

$(a,/3, +) = M6,0+cosm~(cosha+cos/3)~ 

x [om ( A  (7 )  cosh ~ / 3  +B(T) sinh TP) P?++,(cosh a) dT, (3.1 1 )  

where an integral representation of (cosh a + cos/3)-;, (Sneddon 1972, equation 
7-4-24), has been used and a,, is the Kronecker delta. Thus, the introduction of 
M through (3.9) might be interpreted as 'displacing' the mean free surface by 
a prescribed amount to ensure it coincides with /3=0 and hence that (3.4) is 
satisfied. 

It remains to satisfy the body and free-surface boundary conditions, equations 
(2.4) and (2.5). To unify the presentation, the additional term required for Po = K, 
m = 0 is retained throughout, with the understanding that manipulations involving 
this term are carried out for m = 0 only. Substituting (3.11) into the boundary 
conditions gives 

fi T(A(T) sinhTPO +B(T)  cosh 7P0) P?i+,(cosh a )  d7 

(A(T) c o s h ~ & + B ( ~ )  sinh~/3~)P!?;+~~(cosha) dT, (3.12) 
2cosha+c0~/3~ im - 1 sinPo _ -  
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and 

h 
(1 + cosh a): 

JOm 7B(7) Pli;+,(cosh a) d7 + 

x[  - 2 : 6 , , 1 ~ ~ d 7 + ( l + c o s h a ) t  sinh M A(~)P?~~, (cosha)d7  1 = 0, (3.13) 

respectively. Operating on these equations with the Mehler-Fock transform of order 
m (Sneddon 1972, p. 416) yields 

A(7’) sinh 7’p0 +B(7’) cosh 7’P0 = t tanh 7’7~ sin Po 

xJom (A(~)c0sh~/3~+B(~)~inh~~~)g,(~)I~(~~;~,~’)d~ (0 c 7’ c a), (3.14) 

and 

d7, (0 < 7’ < oo), 

(3.15) 
1 1677’ 

sinh 7n sinh 7’n 
B(7’) = -h tanh~’n  

where (3.8) has been used in evaluating the final term in (3.15). Here 

mF&i7(~osh a)P:~,,(coshcc) sinha 
da, cosh a + cos Po Im(P0 ; 7,7’)  = lo (3.16) 

and g,(7) = (72+a)(72+t) . . .  (72+a(2??&-1)2), (3.17) 

where the latter is introduced through the use of 

PF;+iT(cosh a) = ( - l), 9,(7) PIpiT(cosh a), (3.18) 

see Gradshteyn & Ryzhik (1980, equation 8.737(1)). To render symmetric the 
integral operators in (3.14) and (3.15), define new functions 

C(7) = (A(7)  cosh 7p0 +B(7) sinh .Po) (tanh 7p0 g,(~)/tanh m)i,  (3.19) 

and D(7)  = A(7)  (tanh7P0 g,(~) / tanh~n)+,  (3.20) 

to obtain 

coth2 ?‘Po C(7’) - coth 7’p0 cosech 7‘p0 D(7’) 

= isinPo C(7)H,(Po;7,7’)d7 (0 < 7’ < oo), (3.21) lom 

1: 
and 

coth 7‘p0 cosech 7’P0 C(7‘) - coth2 +Po D(7‘) 

7 - A  D(7)L,(p0; 7 , ~ ’ )  d7 (0 < 7’ < a), (3.22) 

respectively, where 

H,(Po; 7 , 7 ’ )  = G m ( 7 )  G,(7’)Im(p0; 7,7’)9 (3.23) 

(3.24) 

and G,(7) = (tanh 77c g,(~)/tanh 7p0)$. (3.25) 

Thus, the eigenvalue problem is to determine the values of A( = Ka) for which the 
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coupled integral equations (3.21) and (3.22) have non-trival solutions for C(7) and 
W7). 

4. Numerical solution of the eigenvalue problems 
A standard method of solution for integral equation eigenvalue problems, of the 

type that arise here, is to express the unknown in terms of a complete set of 
orthogonal functions and convert to a matrix eigenvalue problem involving the 
coefficients in the expansion. This is the approach adopted by Miles (1972), for 
instance. An alternative, but related, approach is to approximate the integral using 
an appropriate quadrature rule and again obtain a matrix eigenvalue problem. For 
the spherical geometry considered in the previous section, both approaches lead to 
difficult integrals that appear analytically intractable and so must be evaluated 
numerically. However, the latter solution method seems to be the more economical, 
involving fewer numerical integrations, and so is adopted here. Details will be given 
for the spherical case, a similar reduction to a matrix system for the cylindrical 
geometry is straightforward. 

The integrals in (3.21) and (3.22) are approximated using the Gauss-Laguerre 
quadrature formula in the form 

where { 7 ( ;  i = I ,  2, ..., N )  are the abscissae and {wi; i = 1,2,  ..., N )  are the adjusted 
weights (see Abramowitz & Stegun 1965, p. 293) containing a factor exp(2nr) to 
account for the exponential decay of the integrands with large 7 .  Treating tho 
integrals in this way leads to the matrix system 

SC- TD = 6HC (4.2) 

TC-SD = -ALD, (4.3) 

xii = coth2riPo, Ti  = c o t h ~ i ~ o c ~ ~ e c h ~ i ~ o  (i = 1,2,  ...,AT), (4.4) 

(4.5) 

= c(7i), Bi = D(7& (i = 1,2,  ...) N). (4.61 

(4.7) 

where 6 = $sinPo, S and T are diagonal matrices with elements 

H and L are the matrices with elements 

Hi, = ws H,(p0 ; 7 i ,  7 j ) ,  L,, = wi L,(Po ; ri, 7i)  (i, j = 1,2 ,  . . . , AT), 

and C and D are the column vectors with components 

Eliminating C from (4.2) and (4.3) gives a matrix eigenvalue problem in the form 

(T(6H - S)-lT + S)  D = ALD, 

which may be solved using standard library routines. For the limit Po + 7c (a circular 
aperture in a plane) equation (4.7) reduces to 

D = AL,D, L, = limL, (4.8) 

D = (Ao+l)LoD, Lo = lim6L (4.9) 

Po-x 

and in the limit P o + O  (the fill depth tends to  zero) 

Po-0 
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ha = lim- = 2Kc. 
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(4.10) 
BO+O 

where 

The only remaining difficulty is evaluating the elements of the matrices H and L 
which depend upon the integrals I ,  defined by (3.16). These integrals were calculated 
numerically using the procedure described in Appendix A. For m = 1, Po = 0 the 
integral has been determined analytically and this calculation is described in 
Appendix B. 

5. Results 
5.1. Cylindrical container 

Values of Kc corresponding to the lowest eight modes (four antisymmetric, four 
symmetric) for the two-dimensional oscillations of fluid in a cylindrical tank are 
given numerically in table 1, for a range of fill depths d l c ,  and graphically in figure 
2. For the limiting case dlc  = 2, the numerical values are of Ka as, for each mode, Kc 
becomes unbounded as d/c  approaches two. Each eigenvalue was calculated using 
several values of N, the number of Gauss-Laguerre quadrature points, up to a 
maximum of 128. The convergence with N was verified graphically by plotting the 
eigenvalue against 1/N. Roughly speaking, the smaller the eigenvalue the faster the 
results converged with increasing N .  The values presented are believed to  be in error 
by no more than one unit in the last figure given. 

Kuttler & Sigillito (1984) give some results for various values of d/c  (from 0.4 to  
1.6, inclusive, in steps of 0.2) and Miles (1972) gives upper bounds on the eigenvalues 
for d lc  = 2. The results from the present method are in excellent agreement with all 
of this work. The limiting values of Kc as d l c  tends to zero are given analytically by 
Lamb (1932, p. 277) as 

and these are recovered to high accuracy by the present method. 

Kc = ;n(n+ 1 )  (n  = 1 ,2 ,3 ,  ...), (5.1) 

5.2. Spherical container 
The calculations of the eigenfrequencies for sloshing in a spherical container require 
the numerical evaluation of the integrals I,(P,,;r,r') defined by (3.16); the proce- 
dure adopted is outlined in Appendix A. Comparisons with the known result for 
I l ( O ;  7, r'), derived in Appendix B, showed that these values could be determined 
numerically to a t  least ten figures for the required range of r and r', except for cases 
when I1 is numerically small (less than about compared to  about unity for the 
largest values). I n  the matrix eigenvalue problem, described in $4, these small values 
occur only at the very extremes of the matrices far from the leading diagonal. Very 
extensive tests were made for a wide range of values of m, Po and number of 
quadrature points N to ascertain the effects of errors in I ,  on the calculated 
eigenvalues Kc.  In some tests the integrals were perturbed by adding to each value 
of I ,  a fixed quantity. Errors in the integrals were found to have relatively little 
effect on the matrix eigenvalues. In  general, it was estimated that a relative accuracy 
for each I ,  of was sufficient to determine an eigenvalue to  within two units in 
the eighth significant figure for all of the calculations reported here. 

Eigenvalues Kc for a spherical tank are given numerically in table 2 for a range 
of fill depths dlc  and for azimuthal wavenumbers m = 0 , 1 , 2 , 3  ; for each m only 
the lowest four modes are given. As with the cylindrical tank the eigenvalues for 
dlc  = 2 are given in terms of Ka. In addition, the results for m = 0 and m = 1 are 

9 FLM 201 
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d l c  Antisymmetric Symmetric d l c  Antisymmetric Symmetric 

0.2 1.04385 

5.35498 

10.76724 

16.1798 

0.4 1.09698 

4.93704 

9.00749 

12.9835 

0.6 1.16268 

4.69867 

8.19875 

11.6490 

0.8 1.24606 

4.60670 

7.85373 

11.07407 

1 .o 1.35573 

4.65105 

7.81986 

10.9718 

2.92908 

8.03025 

13.48837 

18.8477 

2.89054 

6.99058 

11.00134 

14.9595 

2.88924 

6.46064 

9.92610 

13.369 1 

2.93246 

6.23613 

9.46499 

12.6813 

3.03310 

6.23920 

9.39668 

12.5457 

1.2 1.50751 

4.85091 

8.07834 

1 1.2932 

1.4 1.73463 

5.27678 

8.72206 

12.1571 

1.6 2.12372 

6.13932 

10.08074 

14.0138 

1.8 3.02140 

8.31388 

13.55955 

18.7997 

2.0 2.00612 

5.12530 

8.25995 

11.3982 

3.21640 

6.46747 

9.68639 

12.8989 

3.53751 

6.99993 

10.43884 

13.8722 

4.14328 

8.10314 

12.041 89 

15.9749 

5.62694 

10.90612 

16.15857 

2 1.4033 

3.45333 

6.62861 

9.78393 

12.9330 

TABLE 1. Eigenvalues Kc for cylindrical container (given aa Ka for d / c  = 2) 

displayed graphically in figure 3. The comments on the accuracy made in the first 
paragraph of $5.1 also apply to the spherical case except that the maximum value 
of N used was 80. Note that the constraint on the solution for m = 0, introduced into 
(3.11) as the constant given by (3.10), is needed only for the full container, d / c  = 2. 

Calculations of high accuracy are already available for the limiting case when 
d / c  = 2. Miles (1972) gives upper bounds for the eigenvalues in very close agreement 
with the present work. For the empty limit, d / c  = 0 ,  the analytical solution 
described by Lamb (1932, p. 292) gives, for m = 0, 

KC = 2 4 % -  1) (n = 2 ,3 ,4 ,  ...), 

and, for m = 1, Kc = 2n2-1 (n  = 1,2 ,3 ,  ...). (5.3) 

Again, the present method reproduces these values to a high degree of accuracy. 
For a half-full sphere, d / c  = 1, approximate values for the lowest three modes for 

m = 1 are given by Budiansky (1960) while Linton (1988) has made a more extensive 
set of calculations for a number of modes. The present method is in good agreement 
with all of these results. When d / c  = 1, there is a vertical intersection of the container 
with the free surface and, as is to be expected, the higher eigenvalues are in 
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FIGURE 2. 

I I I I I I I I I J 
1 2 

0 '  

(a) modes. 

d l c  

FIGURE 3. Spherical container Kc us. d / c  for m = 0 (0) and m = 1 ( 1 )  modes. 
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TABLE 2. Eigenvalues Kc for spherical container (given as Ka for d / c  = 2) 
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approximate agreement with the solution for the vertical circular cylinder (Mei 1983, 
p. 188). 

Appendix A. Numerical evaluation of I,(P, ; 7 , ~ ’ )  

Using a simple change of variable in (3.16), 

From Gradshteyn & Ryzhik (1980), equations 8.771(1) and 8.772(1), for Iz-11 < 2 

and for (21 > 1 

xF(a+*++i7,$+*+ii7; 1 +i7;z-2)+complex conjugate, (A 3) 

where F(  -, - ; - ; - )  is the Gauss hypergeometric function. Clearly (A 3) is 
applicable over the whole integration range (excluding z = 1) but, because of poor 
convergence near z = 1 i t  is better to split the range a t  z = 2 a.nd use (A 2 )  for 
the lower part and (A3)  for the upper part. The hypergeometric functions were 
evaluated by approximating them in terms of Chebyshev polynomials using an 
algorithm given by Luke (1977). The integrations were made using standard library 
routines; for 2 < z < co the integration variable was changed through the 
substitution z = +exp ( E ) .  

A difficulty arose in evaluating accurately the argument 8 of the complex ratio of 
gamma functions appearing in (A 3). The argument may be expressed as an infinite 
series, but, even with the aid of the Shank’s transformation, this proved to be very 
slowly convergent for much of the required range of 7 .  The argument can be 
evaluated very efficiently by equating the expressions (A 2 )  and (A 3) a t  two points 
in their common range of validity (arbitrarily chosen as z = 1.5, 1.9) and thus 
obtaining two simultaneous equations for cos 4’ and sin 8. 

Appendix B. Evaluation of 11(0 ; 7 , ~ ’ )  

By equations (3.16)-(3.18) the integral may be written 

where 

Marichev (1983) gives a method for evaluating certain definite integrals in which the 
integral is expressed as a Mellin convolution integral. Define 

P 3 2 / T +  1) 

,P,1(2T+ 1)  

( l+T):  ’ 

(1+T)t 

&(T) = 

K 2 ( T )  = D 
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and the Mellin convolution integral 

so that 

Then by the properties of the Mellin transform, denoted by an asterisk, 

K*(s) = KT(s)KZ(s), (B 7) 

and so if the transforms of K,(T) and K,(T) are known then the function K(y) is 
determined from the Mellin inverse of their product. Put  

K,(T)  = T % q T ) ,  (B 8) 

KZ(8) = @(s++). (B 9) 

so that by an elementary property of Mellin transforms (Sneddon 1972, equation 
(4- 1-3)) 

The transforms of K,(T) and K,(T) are given by Marichev (1983, pp. 251 and 249, 
respectively) and substituting into (B9) and B(7) gives 

sin TCV 
K*(s) = r ( s  - v) r ( s  + v + 1 ) r( 1 + v’ - s )  r( - 

n f ( 2  + v’) f( 1 - v’) v ’ - s ) .  (B 10) 

Again using equation (4-1-3) of Sneddon (1972), the inverse transform may be 
determined from equation 22(l)  of Marichev (1983, p. 294) and it is found that 

sin nu 
f ( 1  + v’- v) f( - v’- v )  r( 1 - v’+ v) 

Y”K(y) = n f ( 2  + v’) r( 1 - v’) 
x r(2+ v’+ v ) F ( l +  v’-v, - v ’ - v v ;  2;  1 -y). (B 11) 

Hence, from (B 1)  and (B 6) and using some standard properties of products of 
gamma functions (Abramowitz & Stegun 1965, p. 256) 

cash 77~ cash T’K (7’ - 7) (7‘ + 7 )  
I1 (0 ;7 ,7 ’ )  = 

(7z+3(7’2+9sinh(7’-7)n s i n h ( ~ ’ + ~ ) n ’  

Note added in proof. For the empty limit, d / c  = 0, the analyt,ical results of equations 
(5 .2 )  and (5 .3)  for m = 0, 1 respectively and the numerical results of the present 
method for m = 2, 3 may all be recovered from 

K c = m + Z ( ~ ~ - l ) ( m + n )  ( n =  1,2 ,3  ,... ). 

The mode (m, n) = (0, 1) must be excluded on physical grounds as mass conservation 
would be violated. 
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